
Notes on SAW Tag Interrogation Techniques

1. Introduction

We consider the problem of interrogating a single SAW RFID tag with a known ID and
known range in the presence of multiple interfering tags under the following
assumptions:

• The RF propagation environment is well approximated as a simple delay channel
with geometric power-decay constant a >_ 2.

• The interfering tag IDs are unknown but well approximated as independent,
identically distributed random samples from a probability distribution of tag ID
waveforms with known second-order properties, and the tag of interest is drawn
independently from the same distribution.

• The ranges of the interfering tags are unknown but well approximated as
independent, identically distributed realizations of a random variable p with a
known probability distribution fp , and the tag ranges are independent of the tag

ID waveforms.

In particular, we model the tag waveforms as random impulse responses from a wide-
sense-stationary, uncorrelated-scattering (WSSUS) fading channel with known
bandwidth and scattering function. A brief discussion of the properties of such channels
and the notation used to describe them in this document is given in the Appendix.

Under these assumptions, we derive the expression for the output signal-to-noise ratio
(SNR) for an arbitrary combination of transmitted interrogation signal and linear receiver
filter. Based on this expression, we derive the optimal interrogator configuration (i.e.,
transmitted signal/receiver filter combination) in the two extreme noise/interference
regimes, i.e., noise-limited and interference-limited, under the additional assumption that
the coherence bandwidth of the tags is much smaller than the total tag bandwidth. Finally,
we evaluate the performance of both optimal interrogators over a broad range of
operating scenarios using both numerical simulation based on the assumed model and
Monte Carlo simulation based on a small sample of measured tag waveforms. The
performance evaluation results not only provide guidelines for proper interrogator design,
but also provide some insight on the validity of the assumed signal model.

It should be noted that the assumption that the impulse response of the tag of interest is
known precisely implies that the temperature and range of the tag are also known
precisely, which is generally not the case in practice. However, analyzing interrogator
performance under this simplifying assumption is much more straightforward and still
provides a great deal of insight into the nature of the problem.

2. Basic Approach

Let Ho (f ) represent the known frequency response function (i.e., the Fourier transform

of the impulse response) of the tag of interest, and let Hk (f ) for k = 1, 2, ..., K,



represent the unknown frequency response functions of the K interfering tags. We assume
that all tag frequency response functions satisfy

Hk(f) =0, d lf — fol >B/2 , k=0, 1,...,K,

where B is the two-sided bandwidth of the tags and fo is an arbitrary center frequency.

For the sake of notational simplicity, we will assume for the remainder of this document
that we are operating with baseband-equivalent signals, so that fo = 0. This involves no

loss of generality as the results are all valid as stated for arbitrary center frequencies.

If an arbitrary interrogating signal with frequency spectrum HT (f ) and energy 9 is

transmitted from the transmitting antenna, then the return signal from tag k = 0, 1, ..., K,
received at the (co-located) receiving antenna is given by

	

X4-( f)=FTB2 	r^
HT ( f)H4 (f)ez4a[frk/c

T(f)fdf
where c is the signal propagation velocity and rk is the range of the tag from both the

transmitting and receiving antennas measured in meters'. If the receiver implements a
filter with frequency response HR (f ) sampled at output time t = 0, then the output from

the receiver due only to the return signal Xk (f ) will be

Sk = Erk-a -13/2 HR ( f) HT^f) Hk ( f)e-r4nfrk lcd f

	

J	 ^

	where T = f-B/2 	 (f )I2 df	 . Hence, the output from the receiver Ater due to the signal

of interest is given by

So = Erp a ('
B12HR (f) 

HT^.f) 
HO (f )e-i4^fro 1cd f

	

J	

VET
and the aggregate interference from all of the interfering tags at the output of the receiver,
is given by

1 Note that the amplitude decay rate for the return signal is r-a rather than r-a/2 since
this is a two-way or cooperative radar channel.



K

1 = Y Sk
k=1

K	 B/2	 HT (f)	 -i4nf r /c^^
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J B/2	
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^' B/2 HR(f)HT (f) I7k e	 Hk(f) df.
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Note that the aggregate interference represents a random variable with mean zero and
variance

62 = 
B12 B12 

HR f) HT (f) H (^) HT (^'^)
B12 fB/2	 (	 ST	

R	
ET
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 dfdk

=x9fB/2 
fBl2 

xR(f) HT(f) HR (a,)HT(")(p(f—X)p(f— k)dfdk,

	

B/2 -B/z	
ET	 ET

where y(f — a,) is the spaced freg77ency correlation fi7nction (see Appendix) for the

tags, and

I -2a -i2n(.f-")Plc

represents a similar spaced-frequency correlation fiinction for the multiplicative power
decay and phase shift of the interfering tags.

Finally, the output from the receiver filter due to a complex-valued additive white
Gaussian noise (AWGN) process with power spectral density No and associated

orthogonal increments frequency-domain process Z(f ) is given by

N=
J
 B12HR(f)Z(df)

which is a Gaussian random variable with mean zero and variance

	

2	 B/2	 2
6N = NoJ 

B/2I HR ( f )I df .



Hence, if we let Y = S° +I + N represent the random output from the receiver filter in the

presence of the signal of interest, additive interference, and AWGN, then it follows that
the output SNR at the receiver is given by

E{Y} - IS
0I2

SNRI+N 
= Var {Y} 6I + 61N 

2

E16-2a B/2 
HR
 (f )  HT (.f) H (f)e-i47[f1p /c d f

f -Bl2	 -CT	 °	 (1)

B/2 B/2 HR (.f)
HT f ) HR (^) IITEi^)	

B12	 2
KE f 

B12f-B/2	 v T	 V	 dfda,+N°J B/2I HR (f )I df
.cp( f - X)P( f-k)

Assuming that the aggregate interference is well approximated as Gaussian, the detection
performance of the interrogator is determined by this quantity. Such an assumption is
probably only justified for a large number of interfering tags, but maximizing the output
SNR remains a worthwhile optimization criterion in any case.

As a rule, Expression (1) can be simplified quite a bit by making the following additional
assumptions, which should be valid approximately for tags with good anti-collision
properties and appropriate choices of HT (f ) and HR (f)

cp(u) = 0 V Jul> A/2, where A << B. Recall that 0 represents the coherence

bandindth for the set of tag waveforms,

2. HR(f)^HR(k),HT(f);z:^HTO)VIf- kI <A,

3. Hk (f) ,&Hk (k)b f-k <A,k=0,1,...,K.

Under these assumptions, the expression for the variance becomes

2

61 ^ KEf 
B/2 

HR ( a-) 
HT (^'`)

Bl2	 ET
fX ^2^(.f—X)P(.f —X)dfdX

2

=KEfB/2 HR(X)HT(,`) dX- °/2 cp(u)p(u)du,
B/2	 ET	 o/2

which is a considerable simplification, and the expression for the output SNR becomes
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where NI = f /^2 
(P 

(v) p (u) du. Note that as KEN, I No —> oc , the interference term in

the denominator dominates, and this expression simplifies to

2

y0
-2a 

VB12 H
R (f ) HT (f) Ho (f) e -r4^[f ro /cd f

SNR -	 2
I KNI	

f BB22 

HR ( f ) HT ( f ) I 2 d f	 ( )

On the other hand, as KEN, I NO —> 0, the AWGN term dominates, and the expression

simplifies to

2

G12 HR ( 
f) HT (f ) Ho ( f)e-,4nfr led f

	

SNR IV, = yo-2a E	 B/^	 ^	
(3)

	

No	
f B/2 H

R (f)1` df

3. Optimal Interrogation

Note that in the general case, the choice of the transmitted signal HT (f ) and the

receiver filter HR (f ) that maximize the output SNR given by Expression (1) must be

determined numerically by solving a fairly complex variational problem. Hence, in
general, the optimal interrogator design and the corresponding detection perforinance is
rather difficult to determine. However, for practical purposes, the problem can often be
reduced to either the interference-limited case or the noise-limited case2 . In each of the
two limiting cases, the optimal interrogator design and corresponding optimal output
SNR are easy to determine. We consider each case separately below.

The problem reduces to the interference-limited case as the product of the number of
interfering tags and the power of the transmitted signal goes to infinity. As the same
product goes to zero, the problem reduces to the noise-limited case.



3.1. Noise-Limited Case

For this case, the output SNR is given by Expression (3) and satisfies

2

2 HR (f)B

	

/^	 f)H
T((f ) HO ( f.)e_i4Tf?a/cdf

SNR	 j . -2a E	 V

S
T

N — 0	
IVO	

Bl2 H (f )I ? dfJ-B/2 R

2
y0-2a E B/2 HT (f) 

Ho (f ^ df
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T

	

f B/2	
E

It follows from the Cauchy-Schwarz (C-S) inequality that equality is achieved in this
expression if and only if

HR( f)_P HTE.f) Ho( f)ei4nfro/c

for an arbitrary complex constant P # 0. Furthennore, in this case, we have

2

SNRN = , o-2a E 
^B12 

HT (f) Ho (f) d f yo-2a	 ^B12 ^Ho ( f ) 2 df

	

NO B/2	 ET	 NO B12

where equality is achieved if and only if

HT(f)= yHO(.f),
for an arbitrary constant y # 0. Hence, without loss of generality, the optimal
interrogating signal satisfies

HT(f)= Ho(f),
the optimal receiver filter satisfies

HR l f)= P
IHO(f ) 2 ei47ufro/c

X0
	

>

where So = fB1 
2I Ho (f )I 2 df and 0 # 0 is arbitrary, and the optimal output SNR is given

by

*	 -2a E B12	 2
SNRN =rb No'f-B/2HO(f) df.

Finally, averaging over the constellation of random tag waveforms gives

SNRN = ^o-2a 
No 

E ^ f B1 2IHo (.f) 
2 df } = ro-2aB^ (0) S

No



Notice that in this case, the optimal transmitted signal is just the time-reverse of the
impulse response of the interrogating signal for the tag of interest. This is not surprising
given the "vv-ell-known" optimality properties of time-reversal processing [1, 2].

3.2. Interference-Limited Case

For this case, the output SNR is given by Expression (2) and satisfies

df

/2 -i47f 1b /c 	
2

_ 1,6-2ao-2a  	 (f) HT (f) HO (f) e	 df	
lb
-2a 

B12	 (( 2SNR K
	

.
I	 V	 B/2	 KN f B/2^

H O if )^

f-B/21HR (f)HT (f)1 df	
I

Again, it follows from the C-S inequality that equality is achieved in this expression if
and only if

HR ( f ) HT ( f ) _ PHO ( f ) e i41Tf ro /c

for an arbitrary complex constant (3 0. Hence, one possible choice for the optimal
interrogating signal satisfies

HT	
1,
1, If1`B/2,

iO, f l > B12 ,

the corresponding optimal receiver filter satisfies

HR (f) = PRO (f) 
e i47f ro /C

where (3 # 0 is arbitrary, and the optimal output SNR is given by

SNR; = 
KNI f -B/2 Ho (f )I df .

Finally, averaging over the constellation of random tag waveforms gives

-2a
	 B/2
	 -2a

SNRI =
16	 If

 
E {f B/, J Ho (f) 2 df } _ 

^KNI 
B`^(0)

Notice that in this case, the optimal transmitted signal is just a band-limited impulse
function, which can be approximated using either a stepped CW signal or an FM chirp.

4. Performance Evaluation

To compare the performance of the two interrogator configurations derived in Sections
3.1 and 3.2 above (which would be optimal in the noise-limited case and the interference-
limited case, respectively, if our assumptions were satisfied), we computed the value of
the output SNR for each configuration both numerically and using Monte Carlo
simulation over a wide range of operational scenarios. All performance results were
derived from a collection of 23 measured tag frequency response vectors that were
generated by sampling the actual frequency response of 23 SAW RFID tags chosen
randomly from a homogenous population of tags provided by a single manufacturer.



Numerical performance results were derived by evaluating Expression (1) numerically
using a sampled version of 9(f —a,) estimated directly from the population of tag

frequency response vectors. Simulated performance was derived by generating random
realizations of the random variable Y = Sp +I +N that underlies Expression (1), directly

estimating the quantities E {Yj and Var {Y} , and computing an estimate of output SNR

as E{Y}/Var^Y}.

For the performance results presented in the following two sections, all tags (i.e., the tag
of interest as well as all interfering tags) were assumed to be at the same range,
represented by the variable Ro, propagation was assumed to be in free space (i.e., ot = 2),
the tag processing bandwidth was fixed at 80 MHz (indicated in the figure titles by the
value of BWF,,to,. = 2), and the tag antenna temperature was assumed to be 300° Kelvin.

The assumed gain of the transmitting antenna is represented by the variable GT, the gain
of the receiving antenna is represented by the variable GR, and the output SNR curves in
the figures correspond to 21 different transmitted power levels uniformly spaced at 1
dBm increments from 10 dBm to 30 dBm with a fixed receiver processing bandwidth
(i.e., IF bandwidth) of 15 kHz. Finally, all tag frequency response waveforms were scaled
to correspond to an insertion loss of approximately 30 dB in total tag input vs. output
energy. It follows that for all figures, the output SNR value for the interference-optimal
(i.e., band-limited impulse) interrogator with no interfering tags corresponds exactly to
the value of SNR at the input to the receiver (i.e., Eb INo ) computed using a traditional

link-budget calculation.

4.1. Numerical Performance Results.

For all figures in this section, the 21 curves corresponding to the noise-optimal (i.e., time-
reversal) interrogator are approximately 4 dB above the corresponding interference-
optimal interrogator curves when no interfering tags are present, but drop below the
interference-optimal curves in many cases with five interfering tags. If the curves were
extended to 100 interfering tags (excluded due to space limitations), both the noise-
optimal and the interference-optimal curves would be essentially independent of
transmitted power near the 100-tag extreme (i.e., only one curve for each instead of 21)
and the noise-only curves would all fall below the corresponding interference-optimal
curves at some point in the 0-100 interfering-tag range. This confirms that the noise-
optimal interrogator consistently outperforms the interference-optimal interrogator in the
noise-limited regime and vice-versa in the interference-limited regime. Interestingly, in
many cases, the interference-limited regime is reached with only one interfering tag
present.
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4.2. Numerical vs. Simulated Performance Results.

In this section, we compare the numerical performance results with the simulated
performance results as an indication of how well the assumed statistical tag-response
model captures the behavior of the small number of measured tag responses in our
sample. In all cases, the modeled behavior was nearly identical to the simulated behavior
in the absence of interfering tags (as one would definitely expect), but the modeled output
SNR always slightly exceeded the simulated SNR when interfering tags were present.
Nevertheless, considering the very small size of our measured tag sample, the results
were in remarkably good agreement throughout the range of 0-5 interfering tags.
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Appendix. Background on Wide-Sense -Stationary Uncorrelated -Scattering Fading
Channels

In this appendix, we review the basic concepts and notation for the wide -sense-stationary,
uncorre late d -scattering (WSSUS) statistical model of multipath fading channels that is
utilized in the previous sections of this document. For a much more thorough discussion,
see, for example, [3].

We assume that the channel under consideration has a time -varying impulse response
given by h (ti; t) , where t represents the time at which the output is measured and i

represents the delay of the measurement. That is, h (i; t) represents the output of the

channel at time t due to an impulse transmitted at time t - i. It is further assumed that
h(i;t) is a zero-mean, complex random process that is causal, stationary in t, and

satisfies the uncorrelated scattering assumption; i.e.,

E{h(i;t)1 =0bt,i,

and

E{h(til;tl)h ( T2; t2)} - 
^(Tl;tl - t2 )6(T l -T2),	 _C1 > 0,

0, otherwise,

where an overbar indicates complex conjugation, and 6(ti) represents the Dirac delta

function. Note that if we want to avoid b functions, we can express everything in the
delay frequency domain. That is, if we define the Fourier transform of h(i;t) with

respect to i as

H( f;t)=J 00

then we get

E H	 t H	 t	 - r o E h ; t	 ti, t e-r2"f'i ' i2e"f2i2 d i d'r
(f' l) ( f2 ' 2) ) = J0 JO	 ( 1 1) h ( 2 2)}	 1 2

f
o
00

 ̂  ( il ; tl -t2 )e	 dil

-T(fl-f2;t1-t2),
where cp represents the so -called spaced-tine, spaced frequency correlation function.
Note that cp is only a function of the difference in both time and frequency; that is, the

random process H(f;t) is stationary in both variables. If the explicit output time is not

of interest, the t is frequently dropped in favor of the short-hand notation H (f) .

Similarly, when tl -t2 = 0, the notation 9(fl - f2 ;0) is usually replaced by 9(fl - f2 ),
which is then referred to simply as the spaced f equency correlation function.



Note also that cp is often described in terms of its 2-D Fourier transform, which is given
by

S(i k) — E" f  0 (p(f;t)e'2"Tfe i2nktdfdt

The function S (i; X) is generally referred to as the scattering funnction of the channel and

represents the power spectral density of the two-dimensional stationary random process
H (f ; t) . Finally, it should be noted that we make the assumption of zero mean primarily

for simplicity in exposition, but it is realistic in many cases, particularly if the channel
has no line-of-sight component. In any case, extending the results to account for nonzero
mean is straightforward.

Now, if we transmit a signal s (t) over such a channel, then, ignoring additive noise, the

output is a zero-mean, complex random process of the form

r(t)= f ooh(i;t)s(t—i)di,

The autocorrelation function of this process is given by

E^r(tl)'(t2)}=Erf^h(^l;tl)S(tl ^
l)drl JLf h(r2;t2)s(t2—T2)dr2J

=fr
0 r00

_""f_.,EIh('r1'tl)h (-C2;t2)}S(tl—'Ll)S(t2—T2 )dildi2

f^ cp ( ti 1 ;tl —t2) S ( tl —
 til)s (t2 —il)dtil'

Note that this autocorrelation function implies that the output is generally a nonstationary
process unless the signal has some special properties. For example, if s (t) is itself a zero

mean, stationary random process that is independent of the channel process, then

E 1 1. ( tl) I l t2)} — f ^^(il^tl —t2 )EIs(tl —ti l )s (t2 —il)}dtil

= D̂ s (tl —t2 ) • IE (TI ;tl —t2)dti,II

where cps (tl — t2 ) represents the autocorrelation function of the signal.
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